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ABSTRACT:  Following an approach used for monitoring inland water clarity, this study presented a feasible 
procedure of using Landsat satellite data to monitor coastal estuary water clarity.  Based on  six Landsat Thematic 
Mapper (TM) images and  Secchi disc transparency (SDT) observations which are routinely sampled by New York 
Harbor Water Quality Survey Program, we  developed a semi-empirical model to predict water clarity in coastal 
estuary New York Harbor from multispectral Landsat data.  New York Harbor is a tidal dominant region with 
complex hydrography.  We found that model-fit correlation coefficient (r2) increased when the observation data 
moved closer to the satellite passing time.  Overall, a ±4 days window yield reasonable results (r2 = 0.62-0.84) and 
higher correlation coefficients were obtained for regions with similar hydrographic characteristics.  The water 
characteristics reflect its optical properties, which determine the relationship between water clarity and satellite 
images.  Distinct hydrographic settings in Jamaica Bay from other water bodies result in better correlation 
coefficients when it was removed in the analysis.  Tide and precipitation have impacts on how ground observations 
can be used in deriving model coefficients; therefore, should be included in the future studies.  
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INTRODUCTION 
 
 

Water clarity is an important water quality 
indicator because it is the result of combined effects 
from total suspended solids, dissolved organic and 
inorganic matters, and chlorophyll-a concentration 
(Doxaran et al., 2002).  Water clarity reflects the 
amount of light that can penetrate water, which is 
vital to the survival of submerged aquatic vegetation 
(SAV) (Dennison et al., 1993).  SAV provides habitat 
for fish and shellfish and is an important feeding 
ground for numerous waterfowl.  Not only do SAV 
trap suspended sediments to decrease water turbidity, 
it provides favorable environments for shellfish.  
Shellfish are filter feeders, which can be more 
effective in removing suspended particles and deposit 
nutrients in sediments.  To sustain this natural 
cleaning process, minimum water clarity is required 
to ensure the survival of SAV.  Healthy SAV 
populations provide vital fish and shellfish habitat, 
which is crucial for near shore commercial fishery, 
since 80% of its catch depends on this environment to 
thrive.  Additional value comes from recreational 
usage, which clear water is highly desirable.  The 
benefits of having clear water in our estuaries are 
enormous, both ecological and economical. 

The optical multispectral sensors onboard 
many of the remote sensing satellites possess high 
potential for enhancing regional water clarity 

assessment.  Several previous studies have 
demonstrated the use of multispectral satellite sensors 
for assisting water clarity assessment in large 
estuaries (Stumpf and Pennock, 1989; Woodruff et 
al., 1999; Hu et al., 2004), lakes (Pozdnyakov et al., 
2005), and other inland waters (Kloiber et al., 2002a; 
2002b).  Although these waters and coastal estuary 
waters are both classified as case II (Morel and 
Prieur, 1977), which their optical properties are 
affected by site-specific factors, such as suspended 
sediment types, the geographic and hydrologic 
settings are less complex.  Application of using 
satellite remote sensing in regional, hydrological 
complex coastal estuarine waters has not been well 
studied due to the increased difficulties caused by the 
hydro-dynamics and water characteristics in these 
waters. 

Past satellite remote sensing on case II water 
clarity assessment relied on the corresponding ground 
observations to determine the relationship between 
satellite sensor readings and water clarity.  This is 
because universal relationships cannot be obtained 
due to the natural characteristic of case II waters, 
which its optical properties vary through time and 
space (Jensen, 1983).  The need for the 
corresponding real-time ground observations to 
empirically determine the contemporary relationship 
between satellite data and water clarity is the main 
reason for the slow integration of using satellite data 
in water quality monitoring program in case II 
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waters.  It is also often prohibitively expensive to 
obtain enough ground observations at the same time 
when a satellite collects its image. 

As most of the previous studies relied on 
contemporaneous ground data to determine satellite 
image-ground observation relationships, Kloiber et 
al. (2002a) demonstrated a ground observation 
window that could be used to achieve similar results 
on regional lakes.  This is based on the assumption 
that water clarity in lakes do not change significantly 
within a short period of time especially when the lake 
water is stratified during the late summer time.  This 
approach has proven to be practical with little change 
needed to be made on current ground sampling 
programs to take advantage of satellite remote 
sensing data to drastically improve the spatial 
knowledge of water clarity.  However, unlike New 
York Harbor which has strong tidal influence and 
river inflows forming complex circulation patterns, 
the dynamics of these inland lakes are significantly 
lower with much less river discharges and weaker 
currents limited by short fetch distance.  

Although the signal responses from satellite 
sensors with regard to the change of water clarity has 
been documented in case II waters, complex 
geological and hydrological characteristics make the 
same application over coastal estuaries nearly non-
existent.  Coastal estuaries are fast-changing 
environments fueled by oscillating tidal currents and 
often strong river discharges, and so minimized the 
applicable ground observation window.  Previous 
remote sensing studies of estuaries have relied on 
expensive customized water sampling.  A more 
forgiving observation window will significantly 
increase the potential of integrating satellite data into 
coastal estuary water clarity monitoring program. 

Secchi disc transparency (SDT), the deepest 
viewable depth of Secchi disc, is used as water clarity 
indicator in this study.  Water clarity can be 
translated to the amount of light available in the 
shallow water through Beer’s Law.   

 
zk
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Where Iz is the light intensity at depth z, I0 is the light 
intensity at the water surface, and k is the light 
attenuation coefficient.  K can either be directly 
measured or calculated from Secchi depth (Giesen et 
al., 1990).  SDT is not only widely sampled in New 
York Harbor but also measured in most of the other 
water monitoring programs (Heiskary et al., 1994) as 
it is a simple/low cost method.  SDT, together with 
chlorophyll-a and total phosphorus, are used to 
calculate biomass-related trophic state index, an 
indicator of biological response to forcing factors 
such as nutrient additions (Carlson, 1977).  SDT is 

the most commonly used parameter of the three 
because of the human perception about water quality 
(Heiskary and Walker, 1988).  In additional, SDT has 
been successfully estimated from satellite remote 
sensing in large estuaries where circulation patterns 
are simple and easier to predict (Stumpf and 
Pennock, 1989; Hu et al., 2004).  

A remote sensing water quality study in 
New York Harbor has recently been conducted by 
Hellweger et al. (2004).  Although the conclusion on 
the applicability of using remote sensing on water 
quality  in New York Harbor was positive, consistent 
relationships were not achieved on site specific 
measurements from different dates.  For the water 
clarity, the relationship between SDT and Landsat 
was achieved by using the multi-day average SDT 
value and Landsat reflectance at all stations on the 
Hudson River.  The averaging approach will 
undermine the spatial and temporal variation of water 
clarity in New York Harbor and make the single 
image water clarity retrieval impossible because 
multi-day images will be needed to calculate the 
SDT-satellite regression relationship. 

The objective of this study was to develop a 
feasible strategy for monitoring water clarity in 
regional coastal estuarine waters with complex 
hydrography.  Using New York Harbor as the study 
area, this paper investigates: (1) how to account for 
the tidal influence in terms of matching non-
simultaneous ground observation with satellite data; 
(2) the general circulation patterns and water bodies’ 
characteristics in New York Harbor; and (3) how 
these influence the retrieval of water clarity by 
satellite remote sensing.  

 
 

DATA 
 
 

New York Harbor was used as the site of 
this study.  New York Harbor is a geological and 
hydrological complex coastal estuary with waters 
separated into several distinct hydrography regions 
(Figure 1).  Hudson River carries substantial amount 
of sediment to Lower New York Bay and its estuary 
area; Harlem River, East River, and Kills Van Kull 
connect two different regions of water bodies with 
current mostly driven by tidal change.  Jamaica Bay 
has almost no natural inflow but receives wastewater 
from four of New York City’s wastewater treatment 
plants.  As complex as the waters in New York 
Harbor are, this kind of complexity represents most 
of the world’s urban coastal estuarine waters 
characteristics. 

SDT was collected at selected locations 
(Figure 1) by New York City Department of 
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Figure 1.  New York harbor water bodies and 
NYCDEP water sampling locations. 

 
 

Environmental Protection (NYCDEP) as part of New 
York Harbor Water Quality Survey Program.  
Starting in 1985, SDT has been routinely sampled by 
the program as a water clarity indicator with 300-600 
observations per year.  Water sampling occurred 
every 2-3 weeks and the locations used in this 
program are identified with a verbal description and a 
GPS reading whenever possible.  

Landsat was used in this study for its spatial 
and spectral resolution capabilities.  Two Landsat 5 
and four Landsat 7 images were obtained between 
1989 and 2000 for this study.  All images have <10% 
cloud cover with no cloud shadow over the Harbor.  
Shadows pose a challenge for determining water 
pixels accurately due to the difficulty to distinguish it 
from water since water and cloud shadow both 
having extremely low reflectance.  All images are 
geometric and radiometric corrected Landsat L1B 
products.  Sensor digital number (DN) readings were 
converted to top-of-atmosphere radiance then further 
converted into surface reflectance base on the 
standard procedure and parameters published in the 
Landsat hand book (http://landsathandbook.gsfc. 
nasa.gov/handbook.html).  Simple image to image 
registration was performed to eliminate imperfect 
image geo-referencing.  The goal of image 
registration was not to get the best geographical 
precision but the best fit between images and 
sampling locations.  Image registration was 
performed by first identifying the best fit image by 
visually inspected the overlaid sampling site GPS 
locations with their verbal descriptions.  Then, a 

simple pixel shift was used to register other images 
with this image within 2 pixel difference.  As not all 
sampling locations had GPS locations, an area of 
interest (AOI) pixel-average approach was used to 
obtain sample site image value.  The choice of simple 
pixel shift method was intended to avoid any 
undesired change of pixel value during image 
registration.  Other commonly used image 
registration methods involve spatial averaging which 
will compromise near shore water pixels.  The desire 
to preserve all the pure-water pixels in the image is 
because more than half of the samples were taken 
near shore or in narrow channels where pure-water 
pixels were scarce around sampling sites.  The 
sacrificed accuracy in geographical locations will be 
offset by the implementation of a search algorithm 
discussed later.  

 
Satellite Data Selection 

 
A hybrid search approach was employed to 

retrieve corresponding satellite sensor readings for 
each individual ground-sampling site.  First, a 
corresponding satellite image pixel was identified by 
the GPS reading of a ground sampling location.  
Then, a 3x3 pixel matrix (Area of Interest - AOI) 
with the center pixel containing the sampling location 
was used to calculate the average if the number of 
water pixels in the matrix was more than the 
minimum requirement (7).  When the minimum was 
not met, (this normally happened for near shore and 
narrow channel observations), a larger matrix (5x5) 
then was used as AOI.  This process was repeated 
until condition was satisfied or stopped if the 
maximum AOI (13x13) was reached.  The reason for 
the minimum water-pixels requirement was to get 
enough pixels to calculate a representative average 
satellite reading.  Satellite data was marked 
unavailable when the number of water pixels in the 
search radius was less than seven after reaching the 
maximum AOI.  Figure 2 is the pictorial explanation 
of how the search algorithm was performed.  

The purpose of applying such an algorithm 
is to compensate for the small shifting for the same 
sampling location from time to time, image 
registration uncertainty, and to find the best possible 
representative satellite sensor reading especially for 
sample sites located in narrow channels and near 
shore.  The maximum AOI was set at 13x13, or 390m 
by 390m, to avoid water body cross-contamination.  
Following the work by Braga et al. (1993), Landsat 
near-infrared (NIR) band (TM4) was used to 
distinguish land features from waters with thresholds 
(pixel reflectance > threshold classified as land, 
otherwise as water).  This method utilizes the water’s 
high absorption property in NIR, which is a contrast 
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Figure 2.  An example of how the satellite data for a 
particular water sampling site was derived.  The 
image date is 99/7/30.  Sample site is the Willis Ave 
Station as indicated in the figure.  Willis Ave Bridge 
is ~13m wide and the bridge span is ~160m long on 
Harlem River.  Light colored pixels are identified as 
water pixels and dark colored pixels are non-water 
pixels.  The inner box shows the initial 3x3 pixel 
matrix used for searching corresponding satellite 
image pixels.  Since only 5 pure-water pixels (need 9 
pure-water pixels) were in this 3x3 matrix, a larger 
5x5 matrix (outer box) then was used, which 14 pure-
water pixels were identified.  The average reflectance 
of these 14 pixels will then be used for this sample 
site on 99/7/30. 
 

 
of most land surface features.  Normally, deep clear 
water is assumed to have zero reflectance in NIR.  
However, in NYC’s turbid waters, some reflectance 
might occur in NIR due to backscattering from 
suspended particles.  In order to use TM4 to identify 
water pixels, different thresholds (range from 0.03 to 
0.08) were set for individual image to account for 
backscatter effect from suspended particles as well as 
each image’s calibration uncertainties and 
background radiance, such as path radiance from the 
atmosphere and adjacent effect from nearby land 
surface.  This method was more effective than 
commonly used image classification methods, such 
as maximum likelihood, to exclude mixed water/land 
pixels in the near-shore areas.  The advantage of 
using a threshold was to discard all mixed pixels or 
water pixels highly influenced by the adjacent 
landmass and only identify pixels with reflectance 
solely from water.  It is important to only include 
pure-water pixel in this study since more than half of 
the sampling locations are near shore or in narrow 
channels.  

 

Ground Data Selection 
 

Ground observations conducted by the 
NYCDEP Harbor Survey Program usually take place 
between 10 AM and 3 PM.  Due to the slim chance of 
concurrent space observation during satellite passes; 
it is not practical to use only ground data that taken 
during satellite passes.  More importantly, the survey 
was not conducted daily and only about 10-15 
samples were collected on each observation date.  To 
successfully define the temporal relationship between 
satellite image and water clarity, an applicable 
ground data collection range is needed.  Previous 
study had suggested good correlation for water clarity 
in lakes can be obtained between satellite data and 
ground observation within a 7-day observation 
window (Kloiber et al., 2002a).  The water dynamics 
in New York Harbor are far more complex than 
inland lakes; therefore, this study will analyze the 
predictability from using ground observations date 
range from 0 up to 7 days to see if there exists an 
observation window for New York Harbor.  

Matching ground observation with 
corresponding satellite image pixels will be used in 
this study despite the sometimes-rapid moving 
currents in parts of New York Harbor.  A moving 
sampling location according to prevailing tidal 
movement to compensate for the tidal effect had been 
used in Delaware Bay (Stumpf and Pennock, 1989).  
This method performed reasonably well in coarse 
resolution satellite (AVHRR) with approximated 
prevailing currents; however, it is not practical for 
high-resolution satellite sensor used in this study with 
complex tidal and geographical systems like New 
York Harbor, where water movements cannot be 
easily predicted.  Justification of the effectiveness of 
using matching satellite pixels will be discussed later. 

New York Harbor is dominated by the M2 
tide, which is the principal lunar semidiurnal 
constituent represents the rotation of the Earth with 
respect to the Moon.  It has a 12.42 hr interval 
causing typical maximum tidal current velocity 
between 0.5 to 1 m/s (Blumberg et al., 1999).  The 
tidal phase difference in New York Harbor is up to 
3hr partly caused by the tidal phase difference 
between New York Bight (Atlantic Ocean) and Long 
Island Sound.  

The justification of satellite data from the 
same spatial location as the ground sampling sites 
was based on the following observations.  The actual 
water exchange between different water bodies is 
small despite rapid water movement driven by tidal 
force in New York Harbor (NYCDEP 2003 New 
York Harbor Water Quality Report).  Therefore, 
water quality could remain relatively consistent at the 
similar tidal stage between tides.  This assumption 
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was consistent with the observed Total Suspended 
Sediments (TSS) concentration over the course of 
tidal cycle on Hudson River in May 1991 (Hellweger 
et al., 2004), when the changes of TSS remain almost 
constant at the same tidal stage between one tidal 
cycle despite the large change within the same tidal 
cycle among different tidal stages.  Despite the rapid 
change in New York Harbor’s waters, there could be 
a “relative stratified” phenomenon caused by the 
returning waters and condition when the tidal stage 
restored.  In the other words, waters are simply 
moving back and fourth by tidal force with limited 
mixing and exchanging. 

 
 
SECCHI DISC TRANSPARENCY 

MODEL 
 
 

The correlation between water clarity and 
satellite sensor bands had been documented in 
previous studies (Decker et al., 1992; Cox et al., 
1998).  Kloiber et al. (2002b) did a comprehensive 
analysis on the correlation between Landsat bands 
and water clarity.  To predict SDT, the following 
model derived from Kloiber et al. (2002b) was used 
after exhausting statistical analysis among different 
combination of Landsat bands and observed SDT 
values. 
 
ln(SDT) = a*TM1 + b*(TM3/TM1) + c 
 
where, TM1 is Landsat band 1 (blue, 450-520 nm), 
TM3 is Landsat band 3 (red, 630-690 nm), and a, b, 
c, are coefficients derived from regression between 
ground data and Landsat image.  Different Landsat 
scene will have a different set of coefficients to 
account for environmental conditions such as 
seasonality, atmospheric turbidity, and tides.  

 
 

RESULTS 
 
 
Ground Observation Window 

 
The results from running the SDT model for 

various ground data intervals showed an observation 
window exists.  The correlation coefficients of the 
SDT regression model for all six Landsat images 
showed increasing trend with decreasing gap between 
ground observation date and satellite passing time 
(Figure 3a).  For ground-satellite data gap less or 
equal than 3 days, correlation coefficient greater than 
0.7 are achieved for four out of the six images.  The 

poor predictability for 2000/08/25 Landsat 5 image 
could be caused by the less reliable sensor quality 
and calibration due to Landsat 5 had already 
exceeded its design life period when the image was 
taken during late summer 2000 (Chander and 
Markham, 2003).  The sensitivity of the sensor might 
have degraded and therefore may not be suitable for 
water clarity studies.  The low, but consistent 
increasing predictability for 2000/7/5 Landsat 7 
image, was because of competing dominant water 
characteristics, which will be explain in detail in the 
following section. 

Root Mean Squared Error (RMSE) for the 
SDT model for the four better predicted images were 
about 1 foot (Figure 3c) when satellite and ground 
data gap is less or equal to 3 days.  The average 1 
foot of predicting error on SDT was very good 
considering the ground measuring accuracy was only 
half a foot.  In order to avoid none-representative 
correlation coefficient and RMSE, regressions made 
with fewer than eight samples were discarded from 
the results.  However, when small observation 
window caused SDT samples drop bellow certain 
number, regression calculations could still be 
affected.  This can be seen in Figure 3, when data 
window moved from 1 to 0 day, correlation 
coefficients were up while RMSE got worse for 
L5_890928 image (N=8 at 0-day window).  The same 
happened for L7_001020 image when data window 
moved from 3 to 2 days. 

The general steadily increase of correlation 
coefficients and decrease of RMSE when data gap 
decreases echoed the two assumptions (“relative 
stratified” water condition and low mixing among 
water bodies between tides) made in the study.  This 
trend on top of the high correlation coefficient and 
low RMSE when data gap was within certain range 
implied that water clarity can be predicted from 
satellite image and water characteristics does 
maintain for a short period of time in hydrological 
complex coastal estuaries, such as New York Harbor.  
 
Water Bodies Characteristics 

 
Coastal estuarine areas usually have 

complex geographic features separating water bodies 
into many different geologic and hydrologic regions.  
The different geologic and hydrologic effect causes 
the fundamental change in water characteristics, 
which then defines its optical properties and the 
relationship between satellite image and ground 
observations.  This posed a challenge of using 
empirical relationship to study water clarity in 
complex coastal estuarine waters from satellite image 
when ground observations are obtained from 
different parts of waters.   
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(a) (b) 

(c) (d) 

 
Figure 3.  Correlation coefficients and Root Mean Squared Error (RMSE) between ground observations and SDT 
model predicts with observation data range from 0 to 7 days.  The plots on top show the correlation coefficients and 
the plots at the bottom show the RMSE for the corresponding regression analysis.  Plots on the left are the 
regressions using all available ground observations.  Plots on the right are the regressions using observations taken 
outside of Jamaica Bay.  

 
 
The types of suspended particles determine 

the water’s spectral responses to changing water 
clarity.  Therefore, restricting analysis in the 
hydrologic and geologic similar regions should 
reduce the discrepancy on water reflectance caused 
by the change of water clarity thus improve the SDT 
predictability.  Overall, the SDT predictability from 
the model increased when observations from each 
water body were considered separately (Figure 4).  
Model correlations coefficients were mostly above 
0.6 with about half of those between 0.7 and 0.95, 
except for Jamaica Bay and East River observations 
made around L5_000825 image.  RMSE was about 1 
foot except Jamaica Bay.  Correlation coefficient and 
RMSE also decreased when observation data was 
closer to the satellite image date, which is consistent 
with the overall analysis, and confirm with the 
assumption made in this study. 

From the regression analysis, Jamaica Bay 
appeared to be the worse predicted water body.  
Several factors may have contributed to the poor 
predictions.  First of all, the observed SDT in Jamaica 

Bay have very small fluctuations within the same 
date.  This not only made it hard to find correlation 
mathematically but also amplified the effect of image 
noise caused by sensor uncertainties and the 
atmosphere.  Secondly, the sediment types in Jamaica 
Bay are different than the rest of the Harbor due to its 
distinct geology and hydrology.  Most of the 
sediments in the Harbor are provided by Hudson 
River and subsequently dispersed by estuary 
circulation.  Jamaica Bay, however, connected to the 
Lower Bay only through narrow Rockaway Inlet, 
receives most of its sediments from wastewater 
treatment plants.  The change in dominant sediments 
types can result in different spectral responses at the 
same water clarity. 

There is also high probability of bathymetry 
effect on satellite image over Jamaica Bay’s water.  
The average depth of Jamaica Bay is about 13 ft with 
the average tidal range around 10 ft.  Therefore, the 
average depth will be well bellow 8 ft on a low tide 
event near Spring tide cycle.  Normally bottom 
reflectance will affect water-leaving radiance when
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Figure 4.  Correlation coefficients and root mean 
squared error (RMSE) for the SDT regression model 
broken down the observations to each of the NYC 
harbor regions.  (a) SDT modeled correlation 
coefficient.  (b) SDT modeled root mean squared 
error (RMSE).  Legend: squared = Jamaica Bay, 
triangle=East River and western Long Island Sound, 
diamond=Harlem River, star=Kills Van Kull, and 
cross=Hudson River, upper and lower Bay.  (Note: 
Most of the regressions have sample size 7-15 except 
Harlem River (N=4)). 

 
 

SDT is at least half the depth of the water column 
(Baban, 1993).  Therefore, bottom effects should be 
considered when SDT observations in Jamaica Bay 
are 4ft or greater.  Historical observations and SDT 
values used for the six Landsat image in Jamaica Bay 
showed about half of the SDT were near or above 4ft.  
The effect from bathymetry reflectance will be even 
more significant for observations taken near shore in 
Jamaica Bay, which constitute more than half of the 
sample sites, where water is generally shallower than 
average. 

When only observations taken outside of 
Jamaica Bay were used for the analysis, the 
predictability of SDT model increased with the 
improved correlation coefficient and decrease in 
RMSE (compare Figure 3a,c and 3b,d).  SDT model 
predictability also significantly increased on both of 
the previously poorly performed images (Landsat 7 at 

99/7/5 and Landsat 5 at 00/8/25) especially on the 
99/7/5 image which does not have the potential 
sensor degrading issues.  

(a) 
 
 
 
 
 
 
 
 
 
 

The predictability improvement provided 
evidence supporting the previous argument that 
similarity in spectral response with regard to water 
clarity is crucial.  This improvement in SDT 
predictability also added more confidence onto the 
applicability of estimating water clarity by satellite 
remote sensing in hydrologic and geologic complex 
regions. 
 
Mapping Water Clarity in New York Harbor 

 
The Landsat derived water clarity maps 

(Figure 5) showed the regional differences, which is 
the results of combined effects from tide, river flows, 
and algae growth.  The water clarity in New York 
Harbor is affected by chlorophyll concentration 
especially during the peak summer season (New 
York Harbor Water Quality Report, 2003).  The 
distribution of algae is usually patchy which post 
problem for point sampling, but this pattern can be 
readily resolved from the water clarity map.  Overall, 
upper East River, Long Island Sound, and 
Upper/Lower Bay have higher clarity, this is because 
the exchange with clearer oceanic waters.  On 
Hudson River, the estuary turbidity maximum (ETM) 
can be seen around the mouth of Harlem River, 
which was pushed upstream from the normal ETM 
(around George Washington Bridge) by the flood tide 
current (Blumberg et al., 1999).  
 

 
Figure 5.  Secchi Disc Transparency (SDT) in New 
York Harbor.  This map was created by using the 
SDT model on July 5, 1999.  

 
 

(b) 
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CONCLUSIONS AND DISCUSSION 
 
 

A feasible approach of using satellite remote 
sensing in estimating water clarity in complex coastal 
estuarine water was presented by using New York 
Harbor as the study area.  A model to estimate SDT 
from Landsat TM1 and TM1/TM3 ratio data 
developed for inland lakes were used in the study and 
proved useful for the Harbor’s waters.  We 
implemented an efficient and practical method to 
extract satellite data for individual ground 
observation sites to reduce the uncertainties caused 
by lack of accurate geolocation information of the 
ground sampling points, imperfect image registration 
and mixed pixels around near-shore or narrow 
channel samplings.  
 In general, SDT predictability increased 
when the ground observation data used in the SDT 
regression model were closer to the satellite passing 
time.  This showed water clarity in New York Harbor 
exhibits “relative stratified” phenomena where water 
clarity remained more or less constant over a short 
period of time.  The “relative stratified” condition 
results in the 4-day observation window for in New 
York Harbor.  The actual tidal effect on water clarity 
was not known in New York Harbor due to a lack of 
individual sampling times.  It is recommended that 
tidal phase should be added if the actual sampling 
time becomes available.  Results with larger gaps 
between ground observations and satellite image date 
could be improved with the addition of tidal phase 
information. 

The optical properties of water bodies were 
another important factor on water clarity 
predictability.  Water clarity was best predicted when 
excluding observation made in Jamaica Bay where its 
geologic and hydrologic setting results in different 
sediment types than the rest of the Harbor.  The low 
bathymetry in Jamaica Bay undermined the empirical 
SDT-satellite image relationship.  Incorporating 
bathymetry reflectance involved the dynamic 
understanding of bathymetry reflectance, which is 
impractical.  One solution is only taking observation 
during high tide.  An additional solution could be 
using only longer wavelength (e.g. TM3) data for 
estimating water clarity.  Lower water penetration at 
longer wavelength should minimize the disturbance 
from bathymetry reflectance. 

The increased turbidity caused by 
precipitation could disrupt the “relative stratified” 
condition thus affecting the use of an observation 
window.  In this study, precipitation effects were not 
investigated which might have been the cause of the 
lower predictions in some images.  Future work 

should incorporate the effect of precipitation on the 
SDT model.  

The use of remote sensing technology can 
drastically increase the spatial knowledge in coastal 
estuarine water clarity.  This can be a powerful 
information for water management authorities for 
water quality assessment, and the design of 
monitoring program to target the most dynamic and 
problematic area.  Water clarity can also be used to 
infer total suspended sediments, which are critical for 
modeling sediment transport.  Although with some 
uncertainty, the advantage in spatial coverage should 
be vastly superior than using only a few point 
measurements, especially in geographic complex 
estuaries where spatial interpolation is near 
impossible (Woodruff et al., 2001; Blumberg et al., 
1999). 
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