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ABSTRACT. The patterns of communicable disease epidemics over human space result 
from the combination of several factors. These factors can be categorized broadly into two 
sets: the biological characteristics of human host and disease agent, and culture. Several 
aspects of culture are reijied into particular human settlement patterns. These aspects in­
clude subsistence modes and social networks. This paper considers the influences of both 
settlement patterns and the biological characteristics on epidemic patterns. Using monte­
carlo techniques, contact probability networks, disease agent and host characteristics, and 
the Reed-Frost formulation ofindividual infective and susceptible interaction, communicable 
disease epidemics can be simulated on a microcomputer. The resulting simulations demon­
strate the influence that settlement pattern has on the temporal and spatial spread of epi­
demics in small regional systems. If the effects ofspatial organization can be controlled then 
it may be possible to gain an understanding of the biological effects on observed epidemic 
patterns. 

The temporal patterns of epidemic morbidity and mortality serve as a barometer of 
a population's health and biological interaction with a disease agent. These patterns 
may also reveal information about the nature of a population's spatial organization. 
Settlement patterns resulting from socioeconomic processes and topography affect 
interpersonal contact patterns and rates, which then produce measurable effects on ob­
served epidemic time series distributions. Conceivably, the temporal patterns of epi­
demics occurring in rural places would be different from those occurring in urban areas. 
Unique combinations of these factors have the potential to yield a wide variety of epi­
demic patterns. 

To illustrate this point, let's look at two examples of observed epidemic patterns, one 
characterized as "'short and severe'" and the other "'long and mild.H Short and severe 
epidemics observed in a place can be described as time series distributions that possess 
large numbers of cases clustered within a short time interval. How do the previously 
introduced epidemic factors combine to produce these effects? A number of explana­
tions are possible: short disease transmission chains, a highly infectious disease 
organism, the crowding of susceptible individuals, sanitary practices, or the general 
health and nutritional status (McKeown 1988) of a population. When contacts between 
susceptible and infectious individuals are sporadic (due to the spatial arrangement of 
individuals) and infection rates are low, slower and milder epidemics result and tend to 
produce less clustered time series observations. 

The patterns described above could be the result of any combination of factors such 
as organism infectiousness, population nutritional status and susceptibility, and the so­
cial and spatial arrangements of individuals and households (Angulo 1987). The subject 
of this paper is a method by which the relative effects of these factors on the observed 
epidemic time series distributions can be controlled and evaluated. 

In order to assess the relative effects of spatial and biological factors on epidemic 
time series distributions, an epidemic simulation model was constructed. The model is 
a software program (MicroSoft's QuickC v2.51) written for use on a microcomputer. 
This computer program simulates the movement of infection among susceptible indi­
viduals located in various spatial arrangements ofvillages within a small regional setting. 
The model generates epidemic time series distributions for the entire region, and these 
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distributions can then be reduced and compared using statistical parameters that de­
scribe the temporal distribution curves. The next section treats the construction of the 
epidemic simulation model and provides examples of model runs. Following the model 
section, a synopsis is provided on the method by which simulated epidemic time series 
can be portrayed and compared. 

An Epidemic Simulation Model for Small Regional Settings 

Several components are built into this epidemic simulation model. These include 
functions for writing and reading disease agent, population, and locational data; algo­
rithms calculating contact (infection) probabilities and mobility behavior; as well as a 
means of keeping track of newly infected cases and when and where they occur. Each 
of these components is discussed more fully below. 

Disease and population characteristics are placed in a small dataset for input prior 
to the run of the model. This information establishes the initial conditions of the model 
system. The dataset contains the following information: 
1. initial susceptible population size 
2. initial contagious population size 
3. household size 
4. probability of transmission upon contact 

Certain aspects of the disease agent's natural history are also included: 
5. length of latency period after infection 
6. length of the infectious period 

After the initial conditions of the model system are entered as data, susceptible indi­
viduals and the general population are distributed among the villages within the region. 
Each village is comprised ofa set of average household sizes. The partitioning of villages 
into these smaller units establishes susceptible population densities at the family or 
household level. These densities are then used to calculate probabilities of contact 
within a village and among villages. 

Villages are located in a two-dimensional graph space referenced by x and y coordi­
nates. Distances are linear. The spatial system of villages is considered as a node net­
work over which a contagion travels. The network is also represented by a 
two-dimensional adjacency matrix. Joins between two villages (node and neighbor) are 
indicated as the linear distances between them. When no joins are present, a zero is 
placed in the appropriate matrix element. The matrix, as input data for the simulation 
model, is actually a wlook-up table" for determining where the epidemic proceeds. This 
method of spatial representation has the advantage of being both conceptually simple 
and computationally fast. For a more extensive treatment of network and matrix con­
struction and manipulation, see Unwin (1981) and Haggett et al. (1977). 

The driving mechanism of the simulation model is the probability of an infection oc­
curring when a susceptible individual makes contact with a contagious individual. The 
probability of infection is based on a simple version of the Reed-Frost formulation 
(Ackerman et al. 1984). In this formulation, individuals are infected according to the 
probability density of contact and subsequent infection. The greater the number of 
susceptibles available to contagious individuals, the greater is the likelihood of infection. 
As the local (village) population of contagious and latent individuals increases and the 
local pool of susceptibles is exhausted, the likelihood of infection will decrease. The al­
gorithm determining infection is based on the Reed-Frost formulation and can be re­

~ presented as: 

. p(infect) = 1- qCt, (1) 
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where pUnfecI) is the probability of contact and infection before the number of conta­
gious individuals at the village node is considered at time I, q = 1 - p is the probability 
of escaping infection, and Ct is the the number of contagious individuals found at the 
village at time I. 

It can be seen from this equation that as the number of contagious individuals in­
creases, then p{infeel) increases. The value of p is recalculated for each subsequent iter­
ation. It is based on the current local susceptible population density. The results of this 
process are two proportions totaling 1.00: pUnfecl) and qCt. 

After the probabilities ofinfection and escape from infection are calculated, a random 
number, R, is selected and scaled between 0.00 and 1.00. If the probability of an indi­
vidual being infected is .73, and R is less than.73, then an infection of a susceptible takes 
place. (This is basically a monte-carlo method.) As a result of this infection, one indi­
vidual is subtracted from the current pool of susceptibles. For the next iteration, the 
density of susceptibles decreases and hence the likelihood of contact between contagious 
and susceptible individuals diminishes (this affects the term p). The algorithm is thus 
recursive in the sense that output from the prior iteration serves as input to the process 
at the next iteration. 

The above discussion describes how infection occurs at the intravillage level in the 
simulation model. .Changing scales, we now tum to a consideration of intraregional 
mobility and how infectious contacts are made among villages. 

In this study, villages are connected to each other by roads, bridges, and footpaths. 
This spatial structure implies that the spread of infection will proceed in a steplike fash­
ion from one village to the next (the neighborhood diffusion effect). Since the distances 
are known between a village experiencing infection and its neighbors, the probabilities 
of making intra- and intervillage contacts can be calculated. The inverse distances be­
tween a village and its neighbors are fIrst summed. Next, these inversed distances are 
calculated as individual proportions relative to the sum of inversed distances. The total 
of these proportions equals 1.00. Nearby villages will have larger proportions than more 
distant villages. Another random number is chosen and scaled to a value between 0.00 
and t.OO. This value is then compared to the relative interval sizes of the village distance 
proportions. For example, if the closest village is proportioned from 0.00 to 0.30 and 
the scaled random number is 0.33, then the village that occupies the interval between 
0.31 and 0.38 (say, a relatively distant neighboring village) is selected and contacted by 
a contagious individual from the currently infected village. 

Intravillage contact between susceptible and contagious individuals is possible and is 
usually the most likely. This behavior is based on the predetermined propensity of an 
individual to be mobile within the village system. The distance between a village and 
itself is technically 0.00. To incorporate this into the proportional distance scheme 
would be problematic, since division by zero would occur. Instead, another"distance" 
is chosen that is typical of intervillage distances within the regional system and can be 
incorporated into the proportional distance scheme. The smaller the distance, the larger 
the relative proportion or interval, and the greater the likelihood of a contact between 
contagious and susceptible individuals within the village. 

As the epidemic percolates across the village network, a tally is made of newly in­
fected individuals for each village within each time interval. The result is a two­
dimensional array with columns representing village nodes and rows representing time 
intervals. Row totals are the frequencies of new cases for each time period. These fre­
quencies can be arranged into epidemic time-series distributions and graphed. 
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The model can control individual biological, population, and spatial factors involved 
with disease spread. By holding one or more of these variables constant, the relative 
effects of these variables can be determined. 

Simulated Epidemic Time Series 

Three regional networks and three types of disease characteristics are used to illus­
trate the results of model simulations. Each network is held constant while the charac­
teristics of the disease agent are allowed to vary in three different ways. The resulting 
nine simulations are then graphed as time series distributions. 

One network representing an actual village system found within a small region, and 
two model networks are used in these simulation examples (see Figure I). Each of these 
networks possesses twenty-four village nodes: 1) Parish is based on an actual riverine 
system found in western Finland, 2) Ring is a contrived symmetrical village system 
which can be used to examine the effects of epidemic spread from two different di­
rections, 3) Gateway is an ideal representation of a village system found within a "par_ 
tially commercialized" or colonial socioeconomic environment (see Hodges 1988). 

Each regional system possesses an overall population of 3500 individuals. Ten per­
cent of each of the regional populations is susceptible to infectious disease. Historically, 
this proportion of susceptible individuals corresponds to slightly less than the proportion 
of children under five (120/0 to 160/0) found in a study by the author of population reg­
isters for an 18th- and 19th-century Finnish parish. The general and susceptible popu­
lations are then distributed evenly throughout the network. 

In this example, each of the 24 villages has a population of 146 individuals. There 
are approximately 14 susceptible individuals per village. The susceptible individuals are 
assigned to households that have an average of 8 individuals. Therefore, each household 
averages less than 1 susceptible individual. Contacts are made, however, at the village 
level, and the incorporation of household partitions is meant to reduce the likelihood of 
unrealistically direct contacts between contagious individuals from one village and sus­
ceptible individuals in a neighboring village. 

The simulation model, in addition to its ability to use different network represent­
ations of village systems, can also vary the transmission characteristics of human dis­
eases. For the purpose of illustration, three contrived disease types are used in the 
simulation runs: 1) Transmission "efficiency* is .10 (one out of ten contacts results in 
infection) and is incorporated into the rate of contact between susceptible and conta­
gious individuals. Once infected, the individual has a latency period of four weeks and 
remains contagious for three weeks; 2) Transmission efficiency is .50. The latency period 
is one week and the infectious period is two weeks; 3) Transmission efficiency is .10. 
The latency period is one week and the infectious period is two weeks. For each week, 
an infectious person can contact any combination of two susceptible, immune, latent, 
and infectious individuals in either the individual's village of residence or in a neighbor­
ing village. It is also possible to change the number of contacts according to regional 
mobility patterns. 

Figures 2-4 depict the effects of the three types of disease characteristics on the three 
human landscape arrangements (see Figure 1). The effects are represented as weekly 
times series data aggregated to the regionallevel. 

The biological effects on the time-series distributions are evident in the graphs. 
Longer transmission chains result in longer epidemic durations. Higher transmission 
efficiencies result in greater numbers of new cases per week. This also has the effect of 
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Ring 

Gateway 

Figure 1: Village Patterns 

exhausting village pools of susceptibles at a higher rate, thereby shortening the duration 
of the epidemic. 

The spatial effects of the different human landscapes on the case distributions can 
also be seen in these figures. Networks that have greater distance variations among 
villages (e.g., parish and gateway) tend to produce simulated time series distributions 
that are asymmetrical and are often bimodal. This is the result of the contagion circu­
lating in local village clusters until the susceptible population is exhausted. These dis­
tributions are actually a composite of two or more smaller epidemics. 

The ring network, which has little intervillage distance variation, produces epidemic 
patterns that show a unimodal trend. Because contagion spread can proceed more 
quickly in a more integrated node network such as the ring arrangement, susceptible 
individuals are contacted at a higher rate, which in tum has the effect of shortening the 
duration of the epidemic. This fact illustrates the potential for confusing the effects be­
tween the biological characteristics of a disease and the spatial properties of the human 
landscape. 
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Visual inspection of simulated epidemic time series distributions provides a means for 
some general interpretations of the effects of both geography and biology on epidemic 
patterns. It is possible to examine these effects in a more objective manner using de­
scriptive statistics. The next section is an example of this method. 

Describing Simulated Epidemic Time Series Distributions 

Cliff and Haggett (1982) have proposed a technique for the description and compar­
ison of epidemic patterns based on descriptive statistical parameters. The parameters 
are derived from the moments of the curve that describes the temporal distribution of 
new cases and are the familiar mean, standard deviation, skewness, and kurtosis meas­
ures. Other useful measures, such as the coefficient of variation, can be derived from 
these parameters as well. How these parameters and measures can be applied to the 
analysis of epidemic· time series description is summarized below. 

The mean of the temporal distribution of new cases is taken to be the average time 
of epidemic onset. If observations are made in weekly intervals, this measure indicates 
the average week of infection based on the distribution of epidemic cases. Units of time 
are still contained in this measure, and so it is not dimensionless. Likewise, the standard 
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Figure 2: Type 1 Disease 
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Figure 3: Type 2 Disease 

deviation, which measures the dispersal of cases about the mean week of infection, 
contains time units. Because these two parameters still contain these measurement units 
in their denominators, and because they are also a function of the overall length of the 
epidemic, they are not of much value for comparing epidemic time series distributions 
of different lengths. To accommodate this problem, they can be combined to create a 
new measure, the coefficient of variation (Cliff and Haggett 1982). This new measure 
is derived by simply dividing the distribution's standard deviation by the distribution's 
mean and multiplying the result by 100. The coefficient ofvariation measures the degree 
of case dispersal relative to the length of the epidemic. Small values for this measure 
indicate more temporal clustering of cases, while larger values indicate that cases are 
dispersed throughout the time series. 

Epidemic timing is indicated by the skewness parameter. Using this measure, it is 
possible to determine if an epidemic is either "'fast'" or ",sloW"' with respect to where the 
greatest accumulations of cases are found during the course of the epidemic. Epidemics 
that appear suddenly in an area and are characterized by rapid accumulations of new 
cases will have positive skewness values (the distribution mode tends to be to the left of 
the distribution's mean). Slow epidemics, indicated by negative skewness values, have 
larger accumulations near the end of their durations. This parameter, used in conjunc­
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Figure 4: Type 3 Disease 

tion 'with other infonnation, offers the possibility for interpreting which factors, spatial 
or biological, are affecting epidemic timing. 

Kurtosis measures the relative peakedness of a distribution. For epidemic time series, 
kurtosis indicates the rate of case accumulation. When case accumulation is rapid, the 
distribution curve becomes more peaked (leptokurtic). If the case accumulation is rela­
tively slow, then the curve will take on a flattened appearance (platykurtic). This 
measure is useful for comparing the relative velocities or speed of contagion spread 
within an area. 

Table 1 lists the values of the various measures for the sample runs of the epidemic 
simulation model. The percentages of susceptible individuals infected are also included. 
Recall that two general factors are affecting these measures: spatial organization (see 
Figure 1) and biology. The spatial arrangement of susceptibles and their mobility be­
havior may affect the spatial and temporal patterns of contagion circulation within an 
area. The length of latency and contagious periods can affect epidemic durations and 
the number ofpotential infections. Although the sample size is very small, one can gain 
a tentative picture of the spatial and biological effects. 
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Time Series Average Standard Skewness Kurtosis Coefficient Percent 
Type Week of Deviation of Variation Infected 

Onset 

Parish 1 29.6 13.26 .005 .113 44.8 84 

Ring 1 24.3 9.49 .048 .312 39.1 78 

Gateway 1 34.7 14.94 -0.276 .081 43.0 79 

Parish 2 9.0 3.04 -0.290 .190 33.6 91 

Ring 2 7.6 2.27 .010 .700 29.9 90 

Gateway 2 12.8 5.61 -0.264 .044 43.7 93 

Parish 3 16.9 7.55 -0.213 .094 44.6 65 

Ring 3 9.6 3.39 -0.045 .310 35.3 72 

Gateway 3 15.3 6.66 -0.179 .119 43.5 64 

Table 1: Descriptive Curve Parameters for Simulated Epidemic Time Series 

Considering spatial effects, epidemics occurring in the gateway region possess longer 
durations (average week of onset), regardless of the length of the disease agent trans­
mission chain. In this series of simulation runs, regional networks that possess variable 
distances among villages and different paths for contagion spread (parish and gateway) 
have larger coefficient of variation measures. This can be interpreted to mean that local 
pools of susceptible individuals remained isolated until later in the epidemic. Once in­
fected, the conversion of these individuals has the effect of"spreading out" the distrib­
ution of new cases in opposition to temporal clustering. A symmetrical network, such 
as the ring arrangement, produces epidemic distributions that are symmetrical as indi­
cated by skewness values close to zero. In each case, the ring network also possesses the 
highest kurtosis values, which suggests that symmetrical networks with low intervillage 
distance variation are spatial settings conducive to rapid case buildups. 

Biological effects can be detennined from the percentage of susceptible individuals 
infected in each of these networks. High transmission efficiencies result in higher per­
centages of infection. Lower transmission efficiencies coupled with longer transmission 
chains produce epidemics where smaller percentages of individuals are infected. Longer 
transmission chains appear to have the effect of maintaining infections longer within a 
region which also tends to increase the percentage of infected individuals. 

Using simple curve descriptive measures such as those described above enables the 
researcher to compare epidemic patterns from different times and places. It is also 
possible to sort out and interpret the effects of geography and biology in both simulated 
and observed epidemics. 

Conclusions 

The results of this simulation study show that, in theory, the effects of human land­
scape and biological conditions can be measured and controlled. The simulated epi­
demics can be viewed as archetypes for comparing historical epidemic series in order to 
determine which factors may be responsible for the observed patterns. If the spatial or­
ganization and mobility patterns of a population are relatively constant over time but 
the parameters describing the observed time series distribution vary, then it must signify 
changes in population characteristics or changes in the disease organism, or both. In 
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addition to recreating possible agent-host coevolution scenarios, this model can be used 
to simulate epidemics in reconstructed human landscapes (e.g., hearth distributions in 
archaeological records). Spatial processes of disease can then be simulated for extinct 
populations. 
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