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ABSTRACT Geographers have devoted little attention to modeling temporal variability 
in traffic flow at daily or hourly resolutions. ARIMA (Auto-Regressive Integrated Moving 
Average) models are suitable for this purpose. The Data Services Bureau of New York 
State Department of Transportation maintains hourly, directional traffic volume counts for 
about 60 continuous recording stations on state-funded highways throughout New York. 
The counts have been recorded at some sites since the mid-1970's. Although equipment 
malfunctions and other problems produce many "missing values," the data still comprise a 
uniquely detailed record of traffic flow characteristics in a variety of geographic settings in 
the state. General characteristics of the data are outlined. The treatment of missing values 
poses special problems. Sites typically fall into one of two-classes: those dominated by the 
worktrip, in which daily volumes are highest and most predictable on weekdays; and those 
dominated by discretionary traffic. The latter show the greatest seasonal variability; their 
flow usually peaks at weekends. Problems of time series modeling are discussed. Two 
types of seasonality dominate the data: day-of-week effects and seasonality by time of year. 
The basic features of seasonal ARIMA modeling are outlined. Previous day and previous 
week (seasonal) influences are divided into integration effects (trend or drift), autoregressive 
effects (effects of previous series values), and moving average effects (effects of previous 
random shocks or error terms). With appropriate model specification and identification, 
ARIMA provides a coherent representation of all these influences, which can be interpreted 
in terms of substantive traffic characteristics at various sites. The overall fit of ARIMA 
models to the data is good. A typical model sequence comprises: a logarithmic 
transformation to attain homoscedasticity; first-order differencing (both regular and 
seasonal) to attain stationarity; and first order autoregressive and moving average effects 
(regular and seasonal). The residual series can be applied to detect special traffic events, 
including the effects of winter snowstorms. Examples are given from highways in the Capi
tal District of Albany, New York. 

INTRODUCTION 

This paper outlines an application of ARIMA (Autoregressive Integrated Moving 
Average) models to traffic flow data. The work formed part of a larger effort to examine 
the effects of weather on traffic flow in New York state, using a large data set on traffic 
available from New York State Departnlent of Transportation.! The broader project 
examines the extent to which weather events such as winter snow storms and warm 
weekends in spring produce discernible short term variations in traffic flow, in discretionary 
trips (such as shopping and recreation) and in the non-discretionary work trip. The general 
strategy for detecting such fluctuations has been to examine the residuals from various 

1For access to the data and for several helpful discussions the assistance of the Data Services Bureau, New 
York State Department of Transportation, is gratefully acknowledged. The data are described in Regional Traffic 
Volume Data from Continuous Count Stations in New York State: 1972-1982 (mimeo), Transportation Statistics and 
Analysis Section, Planning Division Data Services Bureau, New York State Department of Transportation, Albany, 
NY 12232, July 1983. Many helpful discussions with John T. Hayes are also grateful)y acknowledged. 
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time-series models of traffic flow, including ARIMA models, moving averages and several 
types of polynomial regression. In principle, after day-of-the-week and seasonal effects 
have been removed and an appropriate model of residual variation has been fitted, weather 
related events may be detected by comparing flow residuals with known series of weather 
records. Such modeling experiments may contribute to our general understanding of the 
geography of traffic patterns. They may also yield models useful in assessing (and 
mitigating) the direct and indirect effects of winter storms on travel in the snowy 
northeast. This work is has been presented more fully elsewhere.2 

The objective in this paper is to outline the ARIMA technique and to show its 
applicability to traffic flow series per se (without any reference to climatic series). This 
seems worthwhile because ARIMA has not been widely applied in transportation geography 
and because the fits obtained on the NYS DOT traffic data are extraordinarily gOOd. 

DATA 

The data comprise hourly, directional traffic volume counts for 59 continuous 
recording stations on statefunded highways in New York. The counts have been recorded 
at some sites since the mid-1970's. We have examined in detail data for 1980, 1981, 1986 
and 1987. Data are reported at an hourly level of resolution, in which case one year's 
record for one site ideally contains 8760 values. For the purposes of this paper the hourly 
directional flow figures were aggregated into one directional flow per station per day; thus 
the basic time series comprised daily directional flow counts. 

Gaps in the record posed a problem, since the ARIMA technique is intolerant of 
any missing values in the estimation and fitting process. Equipment malfunctions and other 
problems naturally produce a crop of missing values in the traffic counts. Data are 
particularly seriously censored in the winter months; December flow values are quite 
poorly represented. To test the ARIMA model we sought combinations of sites and years 
in which the traffic flow record was complete for at least three-quarters of the year with 
no more than 20 missing days of data. Then the missing values were supplied by 
interpolation. Since the variations in traffic flow are dominated by day-of-theweek effects, 
it seemed most natural to compute the missing values by interpolating flows from the 
previous and next days which were the same days of the week. Thus, a missing Tuesday 
value was replaced by the average flow of the closest two Tuesdays for which data were 
available. There did not appear to be a systematic basis in the types of sites (e.g., by 
traffic volume, or by urban/rural status) at which data were missing. From the acceptable 
sites, ten were chosen for analysis. Table 1 provides a brief description of each site; they 
are referred to here by their DOT reference number. Most were in the Capital District of 
New York where the snow study was concentrated, but sites were also chosen in the areas 
of Syracuse and Watertown. 

GENERAI~ FLOW CHARACTERISTCS OF TIlE SITES 

Broadly speaking, the stations analyzed here fall into two groups. The first type 
comprises sites with relatively little seasonal traffic variation and at which weekday travel 
usually predominates over weekend trips. It is reasonable to infer that flow at these sites 

2J . flayes and J. Pipkin, 'The Disruptiveness of Snow and Ice Storms on Roadway Transportation in New York 
State. I A Snow Climatology and Research Design," AAG National Meetings, Baltimore, March 22, 1989; and J. 
Pipkin and J. Ilayes, '''rhe Disruptiveness of Snow and Ice Storms on Roadway Transportation in New York Slate. 
II Time Series Analysis of Traffic Flow I)ata," AAG National Meetings, March 22, 19R9. 



ARIMA MODELING OF TRAFFIC FLOW DATA 

consists mainly of worktrips. Stations 1141, 7341, and 1446 are typical. Flow for station 
1446 in one direction in 1980 is shown in the second half of Figure 1. This site is located 
at the eastern end of the principal bridge across the Hudson which carries Routes 9 and 
20--and all westbound commuter traffic--into downtown Albany. Variants of this 
worktrip-dominated type are found at sites 7131 and 2431, which show a distinct summer 
peak as discretionary trips augment the usual flow of worktrips on weekdays, and come to 
dominate flow entirely at weekends. 

The second type of site is dominated by discretionary travel, and typically shows 
strong weekend peaks. Stations 1552 and 1711 are typical. Flow at site 1711 for 1980 is 
shown in the lower half of Figure 2. This site is the first stop south of Albany on the 
NYS Thruway. There is more traffic at weekends than on weekdays, and there is a very 
pronounced summer travel peak, as well as noticeably higher travel at holiday periods such 
as "Presidents' weekend" in February (around Day 50) and Memorial Day weekend (around 
Day 150). 

STRucrrURE OF ARlMA MODELS 

Time series analysis has a long history in transportation scicnce. Sonlc important 
research foci are: models of speed and conlestion relations;3 predicting traffic volume in 
the short term (e.g. using Kalman filters) and the long term (e.g. with a time-based 
logistic model; ARIMNBox-Jenkins methods and spectral analysis)5 and problems of 
missing values.6 ARIMA (Box-Jenkins) modeling has not been widely applied in 
geography.7 

The basic structure of ARIMA models is illustrated and described in Figure 1. 
This model may be motivated by a critique of OLS Regression as applied to timeseries 
data.8 Discrete time series observations, say Fi' are assumed to be realizations of a 
stochastic process which includes error terms (or random shocks) satisfying statistical criter
ia identical to those of conventional regression analysis (i.e., the shocks are uncorrclated, 

3e.g., F. Hall and T. Lam, ''The Characteristics of Congested Flow on a Freeway Across Lanes, Space dnd 
Time," Transportation Research 22A (1988): 45-56; and D. Mahalel and A. I-lakkert , "Time-series Model for Vehicle 
Speeds," Transportation Research 19B (1985): 217-225. 

41. Okutani and Stephanedes, "Dynamic Prediction of Traffic Volume Through Kalman Filtering lneory," 
Transportation Research 18B (1984): 1-11. 

5S. Ahmed and A. Cook, "Analysis of Freeway Traffic Time-series Data Using Box-Jenkins Tcchniques," 
Transportation Research Record 733 (1979): 1-9; and 1-1. Nicholson and C. Swann, 'The Prediction of Trllffic Flow 
Volumes Based on Spectral Analysis," Transportation Research 8 (1974): 533-538. 

6Davis and N. Nihan, "Using Time-series Designs to Estimate Changes in Freeway Level of Service\ I)cspitc 
Missing Data," Transportation Research 18A (1984): 431-438. 

7But see R. Bennet, "Process Identification of Time Series Modelling in Urban and Rcgional Planning," 
Regional Studies 8 (1974): 157-174; G. Clark, "Predicting the Regional Impact of Full Employnlcnt in Dlnada: A 
Box-Jenkins Approach," Economic Geography 55 (1979) 213-226; and L. Hepple, "Spatial and Temporal Analysis: 
Time Series Analysis," pO. 93-96 in N. Wrigley and R. Bennett (eds.), Quantitative Geography: A British View 
(London: Routledge and Kegan Paul, 1981). 

8G.E.P. Box and G. Jenkins, Time Series Analysis: Forecasting and Control (San Francisco: lIoldcn Day, 1976); 
D. McDowall, R. McCleary, E. Meidinger, and R. Hay, Interrupted Time Series (Beverly Hills: Sage, 1980); and R. 
McCleary and R. Hay, Applied Time Series Analysis for the Social Sciences (Beverly lIills: Sage. 1980). 
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homoscedastic, zero-mean, and normally distributed). The modeling approach represents 
each value of a time series as a function of three effects: autoregression, differencing and 
moving averages. These three effects are governed, respectively, by three structural parame
ters: p, d, and q, resulting in a model symbolized as ARIMA(p,d,q). 

The difference component is used to model drift (as in a random walk) or trend 
(systematic increases or decreases in the Fi values with time). It is hypothesized that a 
given value of the series Fi equals the preceding value Fi.] plus a random step. If the 
mean of the random shock is zero, the result is termed drift; if it has a non-zero nlean 
the result is trend. The process therefore integrates or accumulates over time. Such a 
process may be made homogeneous and stationary by differencing the values of the series 
one or more times. Thus, for example, (Fi - Fi_1) is the series of first order differences of 
Fi. The moving average component expresses a given Fi value as a weighted average of a 
specified number of previous observations. The persistence of past shocks is therefore 
finite; their effect eventually disappears from the system. The autoregressive compoment 
represents each observation as a linear function of a specified number of previous values. 
In particular the ARIMA (1,0,0) model represents the current observation as a portion of 
the immediately preceding one, plus a random shock. 

These three components represent the regular (observation-to-observation) series. 
In addition a seasonal model may be specified in which the same three components operate 
at a specified periodicity. For our traffic data a seasonal model with a period of 7 was 
clearly mandated, since variations in the data are predominantly a day-ofthe-week effect (see 
Figures 1 and 2). 

SOFlWEAR AND lIARDWARE 

Data were read from DOT-supplied tapes on a VAX and were downloaded to an 
AT (286) class PC. All analyses were performed using the time-series module TREND of 
the SPSS-PC program package, running with a math coprocessor. 

MODEL ."ITTING PROCEDURE 

Choice of an ARIMA model which is parsimonious yet which adequately fits data 
is not a mechanical or simple task. Ideally, ARIMA modeling proceeds through three 
stages: identification, estimation and diagnosis, which can be repeated as necessary. Various 
goodness of fit measures are available. In general the success of each modeling stage can 
be assessed by inspecting of the ACF (Autocorrelation Function) and the PACF (Partial 
Autocorrelation Function). The objective is to specify a model which reduces the residual 
ACF to white noise. As the fitting process proceeds, the ACF and PACF provide clues 
as to the type of model which is most appropriate. Indeed, standard texts on Box-Jenkins 
analysis contain normative ACF and PACFs for simulated data, to guide in the modeling 
choices. 

At the outset, the time series must be stationary and homoscedastic; that is, means 
and variances must be constant. Stationarity can be obtained by various degress of 
differencing, while a logarithmic transformation often usually reduces heteroscedasticity. 
Almost all the traffic flow time series we examined were strongly nonstationary and 
heteroscedastic. Some experimentation indicated that a logarithmic transformation was 
always desirable. Differencing required more care. Over-differencing can do more harm 
than good (as reflected in irregular ACF and PACF plots). After considerable trial and 
crror--which tended to confirm the notion that ARIMA modeling is an art which rewards 
trial and error and cxpcriencc--the following method was procedure was applied. 

First, the question of seasonality was addressed. That is, models of the form: 
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A(O,O,O)(sp,sd,sq) 7 In. 

were fitted. It is clear from applications reported in the literature that empirical sp, sd, 
and sq values almost never exceed 2. Seasonal difference values of 0, 1, and 2 were tested 
and the best value was chosen (Le., the value that most reduces significant values in the 
ACF). Then the nine possible combinations of sp and sq (= 0, 1, and 2) were checked, 
and the best-fitting seasonal model was chosen. There are various different ways of assessing 
goodness fit in ARIMA SPSS Trends output provides several statistics including two 
overall goodness of fit measures: the Akaike Information criterion and the Schwartz-Bayes 
criterion. An overall analysis of variance is available, and individual autoregressive and 
moving average coefficients have estimated t-values associated with them. Also each of the 
residual ACF series values has an associated standard error and a Box-Ljung statistic. Again 
after some experimentation, the "best" model was chosen as that which reduced the ACF 
series most nearly to white noise, as indicated by the individual standard errors and 
Box-Ljung statistics. The lowest 36 terms of the ACF were examined, and no more than 
two significant deviations from randomness were considered acceptable. In most case no 
more than one out of 36 was observed, which exceeds the 95% significance level. This 
procedure established the best seasonal (week-toweek) model, say (sd*, sp*, sq*). Then, to 
find the best regular (day-tOday) model, the best seasonal model was combined with the 
"saturated" regular model: 

A(2, 2, 2)(sd* ,sp*,sq*) In 7 

and only those non-seasonal parameters were retained which differed significantly from zero 
according to the estinlated t-values. This procedure was applied consistently to the tcst 
data, yielding the best-fit models presented in Table 3, where goodness of fit is mcasured 
by Mean Average Percent Error and Root Mean Square Error. 

ARIMA replicated the traffic flow data very well. It compares favorably with 
polynomial regression (with day-of-the-week dummy variables), as reported else-where.9 

ARIMA greatly reduces the temporal autocorrelation, which is so clearly evident in the 
residuals of the polynomial regressions. We are currently exploring the power of ARIMA 
residuals to detect unusual traffic flow events, such as snowstorms. 

EVALUATION 

In the forecasting literature, ARIMA (Box-Jenkins) models are seen as relatively 
demanding of data, and relatively difficult to apply; that is, significant experience and/or 
trial and error is necessary to obtain the best fit. The ARIMA family of "complex and 
statistically sophisticated models"IO generally perform well. However, they are by no means 
the best for all purposes. Makridakis and colleagues survey a bewildering variety of 
time-series methods each of which has strengths and weaknesses in: (1) analytical com
plexity (reflected in the need for computer time), (2) degree of expertise or judgment 
required to apply them, and, (3) fit to various kinds of data in short and long term 

9Pipkin and Hayes, "Disruptiveness of Snow and Ice Storms, II." 

lOS. Makridakis et al. (eds.), The Forecasting Accuracy of Major Time Series Methods (New York: John Wiley, 
1984). 
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forecasting. The work outlined here justifies several conclusions about ARIMA in traffic 
flow applications. 

First, ARIMA models provide excellent descriptions of daily traffic flows on part 
of the NYS highway system. Judged by the visual appearance of the fit (the Figures show 
two typical examples), as well as by a formal array of goodness-of-fit statistics, ARIMA 
provides fits which are excellent in absolute terms, and which are relatively better than 
polynomial regressions. 

Second, the flow series are typically non-stationary, but first order differencing, both 
regular and seasonal, was sufficient in almost all cases to produce stationarity. In only one 
case, site 1446, a major river bridge into downtown Albany, was second order seasonal 
differencing necessary. In general, seasonal differencing was more useful than regular 
differencing. This is especially true at those sites which exhibit a summer peak in 
discretionary and weekend travel, so that the annual profile of traffic low approximates the 
profile of a positive quadratic function. 

Third, to examine various model specifications 
exhaustively is not prohibitively time-consuming, even using a PC statistics package. Two 
strategies were tested here: (1) separate examination of each possible autoregressive and 
moving average model, for the stationary series, after any required differencing has been 
done, and (2) specification of a "fully saturated" model (after differencing) with retention 
of only those autoregressive and moving average parameters that are significantly different 
from zero. The fundamental reason why these strategies are feasible is that the orders of 
autoregression and moving averages, as well as of differencing, can be assumed not to 
exceed 2. Thus there is no combinatorial explosion of possibilities that must be evaluated 
individually. 

Fourth, an interesting question arises regarding the substantive interpretation of 
autoregressive and moving average effects. Are the different flow regimes of worktrip- and 
nonworktrip-dominated highways reflected in the predominance of either autoregressive or 
moving average effects? In representing the seasonal (lag 7) contributions to flow, the 
majority of sites record significant moving average rather than autoregressive coefficients. 
Thus, flows seem to be more dependent on previous shocks or random effects than on 
previous flows. With the single exception of site 1711, the sites which record significant 
seasonal autoregressive effects are work-trip dominated. In these cases previous flows, 
rather than previous shocks, are the best predictors of new flows. At the level of regular 
(non-seasonal flows) both autoregressive and moving average effects tend to be significant. 
Finally, it should be pointed out that this exploratory analysis barely scratches the surface 
of geographic research that could be done on the extremely rich DOT traffic flow data. 
What kinds of classifications of flow regimes can be developed? How do flow patterns 
reflect the geography of local network structure? Do the general conclusions on ARIMA 
modeling obtained here apply when flow data are analyzed at an hourly rather than a daily 
level? 

A particularly interesting application of ARIMA modeling is in impact assessment. 
In New York State --and particularly in places such as the Albany Capital District, where 

traffic congestion is burgeoning both in fact and in public perception--traffic flow regimes 
arc likely to be a resultant of (1) steady, secular growth which can be described by a trend 
or differencing model, and (2) one-time "shocks" which permanently change travel patterns, 
including policy actions prompted by congestion or by new residential or commercial 
developments. Clearly a new access ramp or a new road will affect traffic patterns in 
measurable ways. But what about relatively small changes, for example in signage or 
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routing? Interrupted time series analysis]] applies ARIMA and other models to detect such 
effects. This is one of the many possibilities for future research on large traffic flow data 
sets. 

TABLE 1 

Structure of ARlMA Models 

Regular Models 

General Time (How) Series F1, F2, F3, ... incorporating error terms or random shocks 
e1, e2, e3, ... with: 

E(ei ) = 0
 
VAR (e~ = S2
 

COV(ei,ej) = 0, i< >j
 
e i is Normal
 

110, McDowall et aI., Interrupted Time Series. 
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TABLE 1 (cont.) 

The general ARIMA model is represented as 

A(p,d,q) where: 
p = autoregressive order 
d = order of differencing 
q = order of moving average 

Differencing 

A(O,d,O) involves differencing d times 

Autoregressive Process 

with autoregressive parameters ai' a2• 

Moving Average 

with moving average parameters b1, b2. 

Seasonal Models 

In addition to the regular components above, a seasonal model may be applied to capture 
any predictable fluctuations with a known period, with seasonal orders of differencing, 
autoregression and moving averages, sd, sp, and sq. The most general model with seasonal 
lag n is written as: 

A(p,d,q)(sp,sd,sq) n. 

For example, the pure seasonal, first-order autoregressive model A(O,O,O)(l,O,O) 7, (which 
represents a weekly seasonality for daily observations), states that: 

Two other structural choices that must be made are whether the regular and seasonal 
components combine additively or multiplicatively, and whether the model bests fits 
intransformed or logarithmically transformed data. The general multiplicative, logarithmic 
model used throughout thus study is written: 

A(p,d,q)(sp,sd,sq) In 7. 
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TABLE 2 

Description of Sites 

(4-digit values are DOT station reference numbers.) 

1141 on Rt. 9, .1 miles South of Rt. 155, Principal 
Arterial, Urban, 4 lanes 

1711 on 1-87, 1.7 miles North of Exit 22, Access of Rts. 9 and 9N, Interstate, Rural, 5 
lanes 

1351 on Rt. 9W, .1 miles South of Rt. 81, Minor Arterial, rural, 2 lanes 

1552 on Rt. 147, 2 miles South of Rt. 67, Major Collector, Rural, 2 lanes 

1446 East End of Dunn Memorial Bridge, Principal Arterial (Expwy.), Urban, 5 lanes 

1470 on CR 40, .3 miles East of East End of Rt. 134, Major Collector, Rural, 1 lane 

2431 on Rt. 31, 1.2 miles East of the Onondaga-Madison County line, Minor Arterial, 
Rural, 2 lanes 

7341 on Rt. 11, 3 miles South of Rt. 3, Watertown, Minor Arterial, Urban, 4 lanes 

Source: Regional Traffic Volunte Data from Continuous Count Stations in New York State: 
1972-1982, Transportation Statistics and Analysis Section, Data Services Bureau, New York 
State Department of Transportation, Albany, NY 12232, July 1983. 

TABLE 3 

Best-Fit ARlMA Models 

In each case the dependent variable is the logarithm of 
flow. ARIMA models have regular and seasonal components (n = 7). Site refers to the 
DOT count station identifier. Year indicates the date of the flow data. Dir indicates the 
direction traffic flow. 

ARIMA 
Site Year Dir 

MAPE RMSE 

Best Model (1,1,1) (0,1,1) 

2431 87 
1552 87 

1 
1 

.0014 

.0068 
.7160 
1.4222 
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TABLE 3 (coot.) 

1141 86 2 .0005 .8236 
1552 80 1 .0068 1.3197 
1351 87 1 .0024 .8782 
1552 87 2 .0059 1.3795 
1552 80 2 .0065 1.3533 

Best Model (0,1,1) (0,1,1) 

1470 80 1 .0034 .6718 
1351 86 1 .0022 .7984 

Best Model (1,0,1) (0,1,1) 

7341 86 1 .0011 .6256 
1351 86 2 .0019 .5920 
1446 80 1 .0006 .6267 
1141 86 1 .0007 .6091 
1470 80 2 .0032 .4748 

Best Model (0,1,1) (0,1,1) 

1711 80 2 .0023 1.9881 
1351 87 2 .0021 .0765 
1351 86 2 .0019 .5920 

Best Model (0,1,1) (0,1,1) 

1446 80 2 .0006 .4748 

MAPE = Mean Absolute Percent Error 
RMSE = Root Mean Square Error 




